Search results for "SACCHAROMYCES PASTORIANUS"

showing 4 items of 4 documents

Rapid characterization of four species of the Saccharomyces sensu stricto complex according to mitochondrial DNA patterns

1994

Several strains of the four sibling species of the genus Saccharomyces (S. bayanus, S. cerevisiae, S. paradoxus, and S. pastorianus) were characterized by using a rapid and simple method of restriction analysis of mitochondrial DNA. Patterns obtained with four-cutter endonucleases (such as AluI, DdeI, HinfI, and RsaI) made it possible to differentiate each species. S. cerevisiae and S. paradoxus presented a greater number of large fragments than S. pastorianus and S. bayanus with all the assay enzymes. With AluI and DdeI, species-specific bands clearly permitted differentiation between S. pastorianus and S. bayanus. To test the resolution of this method, wild Saccharomyces strains were anal…

GeneticsMitochondrial DNAImmunologySaccharomyces cerevisiaeSaccharomyces bayanusBiologySaccharomyces pastorianusbiology.organism_classificationMicrobiologySaccharomycesParadoxusDNA MitochondrialRestriction fragmentSaccharomycesbiology.proteinSaccharomyces paradoxusDNA Fungal
researchProduct

On the complexity of the Saccharomyces bayanus taxon: Hybridization and potential hybrid speciation

2014

Although the genus Saccharomyces has been thoroughly studied, some species in the genus has not yet been accurately resolved; an example is S. bayanus, a taxon that includes genetically diverse lineages of pure and hybrid strains. This diversity makes the assignation and classification of strains belonging to this species unclear and controversial. They have been subdivided by some authors into two varieties (bayanus and uvarum), which have been raised to the species level by others. In this work, we evaluate the complexity of 46 different strains included in the S. bayanus taxon by means of PCR-RFLP analysis and by sequencing of 34 gene regions and one mitochondrial gene. Using the sequenc…

Evolutionary GeneticsSaccharomyces bayanusDIVERSITYSequence Homologylcsh:MedicineSaccharomycesPolymerase Chain Reaction//purl.org/becyt/ford/1 [https]Genética y HerenciaPCR-RFLP analysisFungal EvolutionCluster Analysislcsh:ScienceGenome EvolutionPhylogenyGeneticsMultidisciplinarySACCHAROMYCES EUBAYANUSPhylogenetic analysisbiologyStrain (biology)Systems BiologyGenomicsS. bayanusPolymorphism Restriction Fragment LengthCIENCIAS NATURALES Y EXACTASResearch ArticleEvolutionary ProcessesGenetic SpeciationMolecular Sequence DataIntrogressionMycologyGenome ComplexityMicrobiologyGenètica molecularCiencias BiológicasSaccharomycesSpecies SpecificityPhylogeneticsGenetic variationGeneticsYEAST//purl.org/becyt/ford/1.6 [https]HybridizationAllelesHybridEvolutionary BiologyBase Sequencelcsh:ROrganismsFungiBiology and Life SciencesComputational BiologyGenetic VariationSACCHAROMYCES PASTORIANUSSequence Analysis DNAComparative Genomicsbiology.organism_classificationYeastGenetics PopulationHaplotypesFungal ClassificationHybridization GeneticHybrid speciationlcsh:Q
researchProduct

Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids

2014

Reticulate evolution can be a major driver of diversification into new niches, especially in disturbed habitats and at the edges of ranges. Industrial fermentation strains of yeast provide a window into these processes, but progress has been hampered by a limited understanding of the natural diversity and distribution of Saccharomyces species and populations. For example, lager beer is brewed with Saccharomyces pastorianus, an alloploid hybrid of S. cerevisiae and S. eubayanus, a species only recently discovered in Patagonia, Argentina. Here, we report that genetically diverse strains of S. eubayanus are readily isolated from Patagonia, demonstrating that the species is well established the…

PopulationMolecular Sequence DataArgentinaBiologyNucleotide diversityCiencias BiológicasSaccharomycesWisconsinBiología Celular MicrobiologíaPhylogeneticsDCR1PatagoniaGeneticseducationDNA FungalMycological Typing TechniquesEcology Evolution Behavior and SystematicsPhylogenyGenetic diversityeducation.field_of_studyPhylogenetic treeEcologyChimeragenetic rootsSaccharomyces eubayanusBeerGenetic VariationBayes TheoremHibridacióSaccharomyces pastorianusbiology.organism_classificationBiological EvolutionReticulate evolutionGenetics PopulationEvolutionary biologyHybridization Genetichuman activitiesCIENCIAS NATURALES Y EXACTASMLSTMultilocus Sequence Typing
researchProduct

Data from: Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids

2014

Reticulate evolution can be a major driver of diversification into new niches, especially in disturbed habitats and at the edges of ranges. Industrial fermentation strains of yeast provide a window into these processes, but progress has been hampered by a limited understanding of the natural diversity and distribution of Saccharomyces species and populations. For example, lager beer is brewed with Saccharomyces pastorianus, an alloploid hybrid of S. cerevisiae and S. eubayanus, a species only recently discovered in Patagonia, Argentina. Here we report that genetically diverse strains of S. eubayanus are readily isolated from Patagonia, demonstrating that the species is well established ther…

SpeciationFungiPopulation Genetics - EmpiricalArgentinaLife SciencesMicrobial BiologySheboyganSaccharomyces bayanusSaccharomyces uvarummedicine and health carePhylogeographySaccharomycesWisconsinPatagoniaSaccharomyces eubayanusMedicineHybridizationhuman activitiesSaccharomyces pastorianus
researchProduct